首页 > 实用范文

六年级数学上册知识点整理归纳:第三单元【多篇】

时间:2025-06-24 07:11:11
六年级数学上册知识点整理归纳:第三单元【多篇】(全文共15503字)

[寄语]六年级数学上册知识点整理归纳:第三单元【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。

六年级上册数学知识点 篇一

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

15∶10=3/2

前项比号后项比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比前项比号“:”后项比值

除法被除数除号“÷”除数商

分数分子分数线“—”分母分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

例如:15∶10=15÷10=15/10=3/2

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4。化简比:

(2)用求比值的方法。注意:最后结果要写成比的形式。

例如:15∶10=15÷10=15/10=3/2=3∶2

还可以15∶10=15÷10=3/2最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6。按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5糖占1/5用25×1/5得到糖的数量,水占4/5用25×4/5得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

小学数学新课标的基本理念

1。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

2。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

3。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

小学数学广角知识点

1、数不仅可以用来表示数量和顺序,还可以用来编码。

2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。

3、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

(3)第5、6位数字表示:所在区县的代码;

(4)第7~14位数字表示:出生年、月、日;

(5)第15、16位数字表示:所在地的派出所的代码;

(6)第17位数字表示性别:奇数表示男性,偶数表示女性;

(7)第18位数字是校检码:用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。

六年级上册数学知识点 篇二

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c

②除以小于1的数,商大于被除数:a÷b=c 当ba (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级 ……此处隐藏13515个字……按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

4、绘制路线图的方法:

(1)确定方向标和单位长度。

(2)确定起点的位置。

(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

六年级上册数学知识点 篇八

一、分数乘法

(一)分数乘法的意义和计算法则

1、分数乘整数的意义

2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

2、分数乘整数的计算方法

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

4、分数乘分数的的计算方法

分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

(二)求一个数的几分之几是多少的问题

1、找单位“1”的方法

(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的3/5是多少? 15×3/5=9

3、已知单位“1”用乘法计算

单位“1”×分率=分率的对应量

注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A比B多(或少)几分之几,求A的解题方法

5、积与因数的大小关系

大于1的数,积大于A。

A(0除外)乘上

小于1的数,积小于A。

二、位置与方向

1、确定物体的位置:(上北下南,左西右东)

(1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

2、物体位置的相对性

(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

南对北 东对西

则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)

三、分数除法

(一)倒数的认识

1、倒数的意义

乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

2、求倒数的方法

求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

是带分数的先化成假分数

是小数的先化成分数

整数的倒数:整数是几,它的倒数就是几分之一。

3、1的倒数是1,0没有倒数。

(三)分数除法

1、分数除法的意义

3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

2、分数除法的计算方法

除以一个不等于0的数,等于乘这个数的倒数。

3、被除数与商的大小关系

当除数小于1时,商就大于被除数。(0除外)

当除数大于1时,商就小于被除数。(0除外)

4、分数四则混合运算的运算顺序

(1) 只有“+、-”或只有“×、÷”,从左往右计算。

(2) 有“+、-”,也有“×、÷”,先乘除后加减。

(3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

(一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

1、已知一个数的几分之几是多少,求这个数的问题

例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

2、求一个数是另一个数的几倍、几分之几,用除法计算。

方法是:用“是”字前面的数÷“是”字后面的数。

例:1、15是5的几倍? 15÷5=3

2、20是25的几分之几? 20÷25=4/5

3、求一个数比另一个数多(或少)几分之几的解题方法是:

用相差量÷问题“比”字后面的量

例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

(2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

4、求单位“1”用除法计算。

具体量(对应量)÷对应分率=单位“1”

什么样的数量就对应什么样的分率。

什么样的分率就对应什么样的数量。

5、求平均数问题: 总量÷总份数=每份数

注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

6、已知A比B多(或少)几分之几,求B的解题方法:

A÷(1+/-几分之几)=B

7、已知单位“1”用乘法,求单位“1”用除法;

分率比多的就1+,比少的就1-。

8、工程问题

把工作总量看作“1”,工作效率就是1/工作时间。

工作时间=工作量 ÷ 工作效率

要做的工作量 由谁做就除以谁的工作效率

1人的效率=两人的效率和-另1人的效率

六年级上册数学课本知识点 篇九

第二单元位置与方向(二)

1、什么是数对?

数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

数对的作用:确定一个点的位置。经度和纬度就是这个原理。

2、确定物体位置的方法:

(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东-西;南-北;南偏东-北偏西。

你也可以在搜索更多本站小编为你整理的其他六年级数学上册知识点整理归纳:第三单元【多篇】范文。

《六年级数学上册知识点整理归纳:第三单元【多篇】(全文共15503字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式