首页 > 教学资源

《平方根》八年级数学教案精品多篇

时间:2025-06-29 07:11:03
《平方根》八年级数学教案精品多篇(全文共7774字)

【前言】《平方根》八年级数学教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。

《平方根》教案 篇一

一、内容和内容解析

1。内容

无限不循环小数;求算术平方根的更一般的方法———用有理数估算、用计算器求值。

2。内容解析

无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现

是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。

用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。

使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。

基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。

二、目标和目标解析

1。教学目标

(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。

(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。

2。目标解析

(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。

(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍。

三、教学问题诊断分析

用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。

基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的。含义。

四、教学过程设计

1。梳理旧知,引出新课

问题1 (1)什么是算术平方根?怎样表示?

(2)负数有算术平方根吗?

师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,

=4;但实际生活中,我们还会遇到被开方数

不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?

设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。

2。问题探究,学习新知

问题2 能否用两个面积为1dm

的小正方形拼成一个面积为2dm

的大正方形?

师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。

追问(1) 拼成的这个面积为2dm

的大正方形的边长应该是多少呢?

师生活动:学生自行解答,教师对解答有困难的学生进行指导。

追问(2) 小正方形的对角线的长是多少呢?

师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。

设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。

问题3

有多大呢?为了弄清这个问题,请同学们探究“

在哪两个整数之间呢?”

师生活动:先让学生思考讨论并估计大概有多大,由直观可知

大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。

追问(1) 那么

是1点几呢?你能不能得到

的更精确的范围?

师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1。4,而平方数大于2且最接近的1位小数是1。5,所以

大于1。4而小于1。5……,在此基础上教师按教科书上的推理进行讲解并板书。说明

是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。

追问(2) 实际上,许多正有理数的算术平方根,如

等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?

设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会

是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法

3。用计算器,求算术根

例1 用计算器求下列各式的值:

师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的

的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。

设计意图:使学生会使用计算器求算术平方根。

练习教科书第44页练习1。

师生活动:学生独立完成后交流。

设计意图:巩固计算器求算术平方根。

4。综合应用,巩固所学

现在我们来解决本章引言中的问题。

问题4 (1)你会表示

(2)用计算器求(用科学记数法把结果写成的形式,其中保留小数点后一位)

师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出

设计意图:让学生体会计算器在解决实际问题中的应用。

问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中。

师生活动:学生计算填表。

……此处隐藏3449个字……p>追问(2)为什么负数没有算术平方根呢?

师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数、

设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯、

追问(3)请判断正误:

(1)—5是—25的`算术平方根;

(2)6是的算术平方根;

(3)0的算术平方根是0;

(4)0、01是0、1的算术平方根;

(5)一个正方形的边长就是这个正方形的面积的算术平方根、

师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导、

设计意图:检验对算术平方根的理解、

3、例题示范,学会应用

例1求下列各数的算术平方根:

(1)100;(2);(3)0、0001、

师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流、

追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?

师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论、如有困难,教师再举一些具体例子加以引导,说明、

设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大、为下节课学习估计平方根的大小做准备、

例2求下列各式的值、

(1)_____;(2)_____;(3)_____

师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评、

设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根、

4、即时训练,巩固新知

(1)教科书第41页的练习、

(2)求的算术平方根、

师生活动:学生独立完成,教师巡视,对个别差生进行辅导、对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题、

设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解、

5、课堂小结

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)什么是算术平方根?

(2)如何求一个正数的算术平方根?

(3)什么数才有算术平方根?

设计意图:让学生对本节课知识进行梳理,进一步落实相关概念、

6、布置作业:

教科书习题6、1第1、2题、

五、目标检测设计

1、若是49的算术平方根,则_____=(_____)

A、7 B、-7 C、49 D、-49

设计意图:本题考查学生对算术平方根概念的理解、

2、说出下列各式的意义,并求它们的值、

(1)_____;(2)_____;(3)_____;(4)_____

设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言、

3、_____的算术平方根是_____

设计意图:

本题考查学生对算术平方根概念的全面理解、

《平方根》教案 篇六

教学目标:

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = .

2、试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

三、练习

P69练习1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的`值吗?

建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

教学目标: 篇七

知识与技能目标:

1、知道平方根的概念,能熟练地求出一个正数的平方根。

2、能描述平方根的特征,理解开方与乘方两者之间的联系与区别。

过程与方法目标:

让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。

情感与态度目标:

1、学生积极参与数学活动,培养其对数学的好奇心与求知欲。

2、过数学活动,使学生获得成功的体验,并形成实事求是的态度。

你也可以在搜索更多本站小编为你整理的其他《平方根》八年级数学教案精品多篇范文。

《《平方根》八年级数学教案精品多篇(全文共7774字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式